logo

Against Monopoly

defending the right to innovate

Patents

Monopoly corrupts. Absolute monopoly corrupts absolutely.





Copyright Notice: We don't think much of copyright, so you can do what you want with the content on this blog. Of course we are hungry for publicity, so we would be pleased if you avoided plagiarism and gave us credit for what we have written. We encourage you not to impose copyright restrictions on your "derivative" works, but we won't try to stop you. For the legally or statist minded, you can consider yourself subject to a Creative Commons Attribution License.


earlier posts

Claim Jumping

In the last post we proposed claimless patenting as an alternative to today's system of allocation. Let's fill in some details of how this could be done.

Under this alternative system, a patent filing consists of a specification, which must contain at least a description of a working model implementation of the purported invention, clear enough so that any person of ordinary skill in the art can construct such a working model in a straightforward fashion. Rather than employ undefinable terms like "undue experimentation", straightforward will be defined below in terms of a Hamming distance, such that the worse the description is, the more likely the patent is to be found invalid.

Unlike today's system, which can't decide if an idea or a method is the patented object, in the claimless system it is the method that is owned, NOT the idea. The ideal specification is a working example (for code), or an actual set of instructions on how to make the supposed invention (for mechanical or electrical objects), or practice the supposedly inventive method. In the case of a software patent, since the working model is purely digital, there is no reason not to require that a working model - that is, actual code that runs - be provided as part of the specification, since there's no storage problem with digital information. Where a physical object, like an instrument, is envisioned, the specification should provide enough information to assemble the instrument. When a chemical is described, instructions for how to purchase or synthesize and verify the compound in question are appropriate. It is the instructions that provide the basis for distance measurement from the prior art.

So far, except for the requirement of a working codebase for a software specification, this isn't too different from existing practice. Now the fun part begins: the specification must also contain the applicant's representation of the closest example in the prior art, specifically including all published art and all commercial or freely-available products, to the purported inventive description above. The applicants must also provide a proposed measure of the distance between the prior art example and their purported invention. In general, such a measure would be like the Hamming distance in digital logic, in that it will count distinctions between the prior art and the purported invention.

What constitutes a distinction? This is where there will still be expertise involved in prosecuting a patent. An infinite variety of distinctions can be made between any two objects. The applicants choose the level of hierarchy at which distinctions will be counted. If they choose tiny steps to maximize the distance between themselves and the prior art, accused methods or devices will be able to use the same tiny steps to maximize distinctions between themselves and the invention, thus avoiding infringement. If the applicants choose to emphasize only huge distinctions, their distance measure will be small. A successful prosecution finds a level of hierarchy that maximizes the uniqueness of the applicant's object while still forcing competitors to achieve substantial distinctions or improvement to avoid infringement.

The patent examiner then reviews the specification under the following rubric: Using the Hamming distance measure proposed by the applicant, if the examiner finds an example in the prior art that is closer to the purported invention than that provided by the applicants, the application is prima facie invalid and rejected. The applicants may respond by accepting the examiner's example. The application may then be granted. This provides the first bound on the patented invention.

Note that we have actually abandoned any use of the concepts of "obviousness" and "invention": the application just describes something that is different from what has gone before. It is irrelevant how "hard" someone else thinks it might be to come up with the object or method described; all we do is count a distance and allocate a space around where they are.

The same Hamming distance measure can be used to establish enablement, again encouraging precise description and setting bounds on the patent's scope. If a person of ordinary skill is given the task of reducing the patent to practice, the Hamming distance between what they actually construct and what is provided in the patent sets another upper bound on allowable description. Since obviousness is no longer an issue, the persons doing the work can be employees of the applicant reducing the application to practice, which is just fine for practicing corporations wishing to block copying of their work -- but not so fine for non-practicing entities, who must at least find someone to build what they purport to own before they can litigate.

If the Hamming distance from the specification to the actual practice is larger than the distance from the prior art to the spec, the patent is invalid. If the Hamming distance from the spec to the reduced-to-practice example is larger than the distance to the purported infringer, there is no infringement.

This procedure has the advantage that the effect of a given patent will in general fall during the term, as practices change and the distance from the patented description to current practice increases. That is, we are making NO distinction between improvements supposedly derived from the purported invention and other improvements: as the art becomes more capable, the patent disclosure becomes less relevant. Only truly novel inventions, for which a large distance is maintained for a long time, will support infringement claims many years after grant. Trivial improvements on existing practice (which the vast majority of today's patents are) will quickly become irrelevant, as the potential infringements differ more and more from the described invention.

Finally, because the breadth of a patent is limited by the prior art rather than bizarre legal theories about what a word means, and can only grow narrower with the passing of time, the concern that a patent will block important activities and impair rather than encourage innovation is greatly reduced. This may enable legislators and judges to abandon pointless distinctions about what the appropriate subject matter for a patent is. However, the importance of prior art should be emphasized, and therefore any subject matter where the accessible prior art is lacking - that is, where the majority of information is inaccessible due to e.g. copyright or secrecy restrictions -- should be considered inappropriate for patenting.

Well, that was all very profound, or at least profound-sounding, but I'm still acting like a mathematician, proving statements about the properties of an object without actually producing it. In the next post we'll take a crack at defining a Hamming distance for a real-life application, to gain some insight into the possibilities and problems of measuring the size of an idea.

Clarity and Aimlessness Make...

In the last few posts, we've looked at ways to change how patent are examined and litigated -- by having people who know the field review them, and by actually testing their conformance to the standards they are supposed to meet. Now we're going to get even more extreme, and look at changes in the fundamental way the ownership of knowledge is defined and imposed. This isn't unprecedented; the existing system of specifications and claims has been elaborated over the last two centuries, and through the history of patent monopolies, various disparate methods have been used to allocate and enforce them.

As we explained a few posts back, today's patents consist of a specification that is supposed to describe and enable the practice of a novel and useful method or apparatus, and a set of claims that is supposed to describe what the inventors own in return for their disclosure. The claims are supposed to be clearly described in the specification, and define the precise boundaries of what is owned, so that a person practicing the art can read the claims and avoid infringement if they so choose. But in practice, claims are interpreted by judges with no knowledge of a field, aided by attorneys with large incentives for distortion and experts paid to serve the interests of their clients. As we previously noted, even legal experts admit that no one knows what claims mean until litigation occurs. Naturally, the existing system is very useful for attorneys, since obscurity and confusion are the servants of litigation -- but it is harmful for everyone else. And that leaves aside the fundamental question of whether it is possible to construct unambiguous boundaries in the very-high-dimensional space of concepts and ideas.

So let's abandon this silly system and try something different. We proceed by starting from the purpose of the patent system as stated in the US constitution: to promote the progress of science and the useful arts. Progress is promoted by change and exploration. People learn by copying, but must make changes to progress. So let's make our basic principle: no exact copies. If I make something new, I can prevent you from just tearing apart my version and doing exactly the same thing. (And the newer my thing is, the more credit I ought to get.) But unlike the current system, I can not prevent you from improving upon my new object to make yours - that's progress, and we're supposed to promote it. So how do we tell the difference?

To accomplish this end I'm going to play a mathematician's trick: I'll assert the existence of something useful without having it in hand just yet. Let's imagine we have found a way of defining a distance between ideas. (In a future post we'll look at a possible approach to making such a measurement, but be warned this is the hard part, and care must be taken to avoid being back where we started, with terms that don't have a useful meaning.) If we have this handy tool, we can then make a patent system that actually works. Here's how:

• A patent applicant writes a specification that describes what they have built. But instead of appending claims, they cite the closest previous work they know of - the closest prior art - and then propose a measure of the distance between what they have done and what the prior art did. This distance is a number, not someone's obscure arguments about what is substantial and what is not.

• The examiner either agrees, or cites prior art that s/he believes is closer to the applicant's work, using the same distance measure. Once the applicant and the examiner agree, the patent is granted.

• The applicant then owns everything that is closer to their specification than the nearest prior art, with the following exception: To litigate, the applicant needs to show that they can actually implement their invention, and that the implementation is closer to their specification than the prior art was. If you have to move farther away from the disclosure than the disclosure was from the prior art to make the invention work, the invention was not enabled. The patent is declared invalid.

• Defendents in litigation can narrow the scope of the patent by finding prior art that was closer than what the applicant and examiner found. An accused method or device that is found to be farther from the specification than the specification was from the prior art is not infringing, even if it contains everything in the specification. I can't just copy your stuff, but I can improve it by more than you had improved what already existed. Progress is promoted, not discouraged.

The claimless approach to patenting fundamentally changes the incentives provided by the system. Instead of filing when you don't know how to do something, you need to file when you do to have your patent be found valid. Non-practicing entities are intrinsically excluded: if you can't make it you can't patent it. The more new stuff you disclose, the more you own. The impact of most patents will quickly fade as a field progresses; only really revolutionary disclosures, with huge distinctions from the prior art, will retain value for the full formal term of the patent.

Most importantly, the claimless patent system abandons the false proposition that ideas exist in a linear progression, and ownership ought to be assigned to the first one. Invention is a net, not a chain. We hold each other up; we should own the strands we weave and not the ones we don't.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

In the next posts we'll discuss a few details of implementation, and then take on the hard part of proposing a distance measure that can be at least reasonably unambiguous in the very complicated space of ideas. As my boss in the real world likes to say: go big or go home.

Testing 1-2-3

In the previous post, we considered the proposal that every patent filing ought to be tested to see if it provides the two complementary benefits of being non-obvious and enabling. Let's see how such a requirement might work.

The idea is that every application to be examined shall be exposed to empirical testing to establish whether the supposed invention disclosed is actually novel, and whether the description is sufficient to enable it to be practiced. The empirical test uses the services of persons taken to be of ordinary skill in the relevant art. The number and type of persons selected may be chosen by the applicant, but it is a strict requirement that the same persons must participate in both the test of novelty and the test of enablement. (This prevents the use of persons of minimal skill and knowledge to examine novelty, and great expertise to demonstrate enablement.) The test may be performed during examination or after a patent is granted, but must precede any litigation involving a granted patent. (Note that the longer the applicant chooses to wait, the more risk there is that everyone will know about the supposed invention, generally by independent means rather than from the applicants. So it's actually to their advantage to do this early in the process.) The persons involved may be compensated by the applicant, but the compensation shall be arranged in advance, and provided at the completion of each stage as described below, without consideration of the contents of the reports in question. Participants should sign a statement declaring that they have no stake in the matter in question other than the agreed-upon compensation, and will diligently pursue both phases of the work with equal effort and attention.

In order to test novelty, the persons selected shall be presented with a statement of the problem to be solved and any constraints on the solution. It's not entirely trivial to figure out how to do this. Some patents have a nice background description and problem statement as part of the specification. Others jump right into their supposed invention, without even clearly saying what problem it is supposed to solve. A first cut is to have the relevant patent examiner provide a problem statement, based on the examiner's understanding of the specification, within a reasonable time after a request from the applicant. It may simply be extracted from the specification, if in the examiner's judgment the specification contains a clear problem statement that does not include the inventive method or apparatus. But in cases where that doesn't work, the examiner can use her or his own judgment about how to frame the problem without describing the applicants' solution.

In addition to the problem statement, the persons selected should be provided with any background discussion in the specification that describes relevant prior art, any prior art cited by the applicants or the examiner, and access to any other relevant art they require. Note that the access to art should NOT be constrained by the date of filing of the application, again in order to encourage the applicants to pursue an empirical test at the earliest possible date, since published art after the date of application may anticipate the described invention.

The test personnel shall be provided with whatever time and resources the applicant believes are needed to pursue a solution to the problem posed, with the proviso that whatever time and resources are provided for the examination of enablement must also be provided for the examination of novelty, and vice versa. This prevents the applicant from giving the team (say) 1 hour to find solutions to the problem, equipped with a slide rule and a notebook, and six months and millions of dollars of equipment to implement the described invention.

Once the specified initial phase is completed, the persons involved shall record their proposed and/or demonstrated solutions to the problem in question. They shall then be provided with the full patent specification, but NO other additional resources. Their responsibility is to practice the described invention, aided by the specification, and the same prior art and resources provided to solve the problem in the absence of the disclosure of the purported invention in the spec. The same people, the same calendar and labor time, and the same resources, shall be made available as for the initial examination of novelty.

A participant in the first stage may become unavailable for the second stage (due to personal reasons, business necessity, accident, etc.) but they shall not be replaced with any other person, though any notes, documents, or other work product they produced in the first stage may be used by the other participants in the second stage. A final report shall detail the extent to which the participants were able to practice the invention described in the specification. Any work product -- that is, any code they wrote, anything they built or modified, any other physical results of the project -- should also be preserved and available as evidence in the case of subsequent litigation.

The result of both stages shall be made available to the relevant examiner (if the patent application is still in prosecution at the completion of this exercise), and become part of the file wrapper in any case. The results of both stages must be completed before any litigation can be initiated based on a granted patent, and must be entered as evidence in any such litigation, and made available unedited to the jury in such litigation. The work product should be available for examination by representatives of the two sides in any litigation. The persons performing the two tests shall be obligated to provide (at least) deposition testimony, if requested by either party, for which they shall be compensated in at least the same fashion as for the work performed in the project, the cost of such compensation to be disclosed to the court and equally divided between the plaintiff and defendant.

In the next post we'll look at the various benefits and challenges of implementing this non-trivial change in the way patents are examined. But meanwhile I have to go see how the Giants are doing...

Does Empirical Mean Pertaining to Empires?

Non-obviousness and enablement are the two complementary aspects of the idea that a patent has social value: without the patent a person of ordinary skill cannot practice an invention, but with the patent they can. But how do we know if and when this is true?

The answer is rather disheartening. Non-obviousness is tested by how an examiner feels about claims. We noted in the previous post that this is a strange and short-sighted way to think about an invention, but what's worse is that the when real world provides us a falsification of the examiner's decision, it is treated as a crime. When a patent has been granted, and then another person discovers and practices the claimed invention, they can be sued for infringement, even if they can demonstrate that they had no knowledge of the patent and no other means of deriving their result from its inventors. Upon first glance this is a rather bizarre result, since the fact that another person has discovered the invention unaided means that the first part of the patent compact has been shown to be inapplicable: the patent was not needed to practice the invention. The invention was obvious, the examiner got it wrong, and the patent is invalid. But that's not the way the law works. So not only do we not test the belief in non-obviousness during examination, we willfully ignore subsequent evidence that the examination was incorrect. [1]

Enablement is worse. It plays no role in examination and usually also in litigation. The America Invents act has even abandoned the requirement that the best mode of practice known to the inventor be disclosed, since lack of such disclosure no longer has any effect on validity. This is a puzzling result for an engineer (like me) who actually makes things, because we know from long and painful experience that there are lots of good ideas but very few that actually work the way you think they will. Attorneys and judges basically assume that everything is ok when enough text has been recorded, even if the text is gibberish. This is because they never have to ship product.

There's no reason for this situation, other than the legal profession's aversion to empirical data. For a brief period in the 19th century, inventors were required to provide a working model with their application. The practice was terminated because the patent office ran out of room for all the stuff, not because it was a bad idea. A patent applicant is asking for a monopoly. We don't have to give it to them. The burden should be on them to PROVE by empirical testing that they have satisfied the two complementary requirements for receiving their right to exclude.

This isn't that hard to envision. The European Patent Office presents the following standard for judging inventiveness:

"Is there any teaching in the prior art, as a whole, that would, not simply could, have prompted the skilled person, faced with the objective technical problem formulated when considering the technical features not disclosed by the closest prior art, to modify or adapt said closest prior art while taking account of that teaching [the teaching of the prior art, not just the teaching of the closest prior art], thereby arriving at something falling within the terms of the claims, and thus achieving what the invention achieves?"

So all we have to do is validate the "would, not could" standard by getting some folks together, giving them the problem, and seeing what they do in fact come up with -- and then handing them the patent and seeing if it makes a difference. In the next post we'll present some more details about how to do this, why we ought to, and where to use the resulting knowledge.

NOTES 1: A "prior rights" defense is now allowed in the US when the invention in question has been in use by the accused infringer prior to the filing of the accusing patent. The user retains the right to use the invention, but the patent is still not invalidated, even though it was shown to be so obvious that someone invented it before the person who filed.

Whatever Happened to Peer Review?

Oooops, conceptual typo.

Aaaack, blew it again.

Third time's the charm:

There. Dull but relevant.

Peer review is the process of grabbing people who are familiar with a field to look at a paper or book before it gets published. It has been used in various forms for a long time in the sciences; Wikipedia provides a nifty history of the process. While 19th-century reviewers were often journal editors or staff, in the twentieth century reviewers were generally folks who had themselves published papers related to the one under consideration, the reviewers being recruited by journal editors. In the modern crowd-sourced world, journals are experimenting with open reviews, in which an article is published and then reviewed by whoever is interested, with the reviewers' comments becoming part of the publication.

A limited form of peer review, known as the Peer-to-Patent project, has already been tried by the US Patent Office. A first version ran in 2008, and a revised project ran from October 2010 to September 2011. Both were administered in cooperation with the New York Law School, and were limited to certain areas of art, including software-related patents, and later biotechnology, and speech recognition. Patents submitted to the program got earlier review as a reward. Smaller related projects have also been run in Australia and Japan. Most importantly, the reviewers were limited to submitting prior art they thought was related to the patent, and optionally annotating the art to help an examiner.

NYLS published a couple of anniversary reports (Peer to Patent home page). The program was also evaluated in some detail by students James Loiselle, Michael Lynch, and Michael Sherrerd at Worcester Polytechnic Institute ("Evaluation of the Peer to Patent Pilot Program"). While various administrative problems were encountered, even this limited program clearly contributed to the ability of examiners to access relevant prior art. At the very least, Peer-to-Patent ought to be revived and extended to all areas of art.

However, the process as it has so far been tried treats the public as servants assisting examiners but exercising no judgment. Peer review in the sciences may leave the final decision to an editor, but encourages reviewers to be full participants in the intellectual endeavor of evaluating the submitted work. As we described in the previous post, it is the focus on comparing claims to one or two prior publications, rather than actually reading and comprehending the specification, that gives rise to many of the absurd results we see from the patent system. In order to make peer review contribute fully to the patent process, we need to realize that people skilled in the relevant art are not just a theoretical legal construct but a reality, and ensure that they contribute (hopefully thoughtfully) to the process of examination. We therefore propose the following elaborated peer review process.

Every patent application should be subject to obligatory peer review to supplement the existing examination. The pool of reviewers may be administered by the USPTO, or administered by professional organizations relevant to specific arts (such as the IEEE for electrical and computer engineering) as representatives of the USPTO. To ensure an adequate pool of qualified reviewers, the USPTO should require that a person cannot file a patent application unless they have also registered to act as a reviewer. (This particular provision, at least, is likely to require legislation. I never said reform was easy.) An alternative, more stringent condition, would be that any would-be applicant must have performed at least (for example) three reviews of other people's applications in the previous year. The status of international applicants may be arranged through suitable agreements, such that they can fulfill the same duties as US citizens, while subject to the laws of their country of residence.

The reviewer should be bound to examine the specification and provide their best objective evaluation of:

• NOVELTY: whether a novel invention is described;

• ENABLEMENT: whether the invention is described in sufficient detail to allow them (or anyone else of ordinary skill) to practice the invention without undue experimentation;

• UTILITY: whether the described invention is useful to practitioners of the relevant art.

Reviewers may optionally express an opinion regarding claims submitted in the application. The examination process, as we have noted, already puts way too much emphasis on partitioning ownership; there's no need to add more.

It is an interesting question how reviewers for a specific application should be selected, since a reviewer ought to be conversant in the field of interest for the application. Since would-be applicants would be required to register as reviewers, it is possible to also require that they state the fields in which they are knowledgeable, and then have applications recommended by an examiner. The examiner may also look at past filings, or technical publications, by a reviewer to see what areas they work in. These approaches are analogous to peer reviewers selected by journal editors based on past publications. Self-selection is an alternative in the modern internet-based world, but might be usefully accompanied by a brief statement of why a reviewer is qualified to review a specific application, or perhaps a resumι.

Reviewers may cite prior art that they believe to be relevant, just as in the Peer-to-Patent program. As noted in the program evaluation, it is also important that they annotate the cited art to clarify what the examiner might want to look at.

Each review becomes a part of the file wrapper for the application. (That's the official record of the prosecution of a specific patent, and becomes publicly available after publication.) There is no requirement that an examiner take the reviews into account, except that s/he should look at any additional cited art. However, in the event of litigation related to a granted patent from the application, the unedited reviews must be entered as evidence and made available to the jury. Reviewers may be called but shall not be obligated to testify, except to provide an affadavit ensuring that the cited reviews were in fact produced by them.

Note the fact that an applicant MUST be a reviewer addresses the issue of ensuring that patents are indeed reviewed, a concern in the earlier projects. The requirement of review as a precondition for filing also addresses any reticence an employer might have in allowing an employee to review; if they want to file, they have to allow their employees to review.

Disclosure of a patented invention is the price of monopoly. The strange idea that an application should be secret should never have arisen and should be abandoned in any case; it should not be an obstacle to review. Review by people who know what they are reading will help ensure that the invention is actually comprehensively and comprehensibly disclosed. It will help reduce the tendency of applicants to intentionally file before they know how to enable an invention, thus avoiding effective disclosure while securing monopoly rights.

The question of anonymity of reviewers, and of applicants, is a continual challenge and a subject of experimentation in the sciences; there is no reason we should expect the best answer to be immediately apparent for a patent review system. However, in the case of patents, I suggest that there are strong arguments for disclosure and attendant responsibilities. In order to qualify to hold monopolies, a would-be applicant must review. In order to ensure that he or she does so responsibly, they should NOT be anonymous. Disclosure also makes it possible to review qualifications and expose conflicts of interest that might taint their review.

I have proposed that reviewers are not exposed to testimony in litigation, except to confirm that the review in question was in fact produced by them and has not been tampered with, but a good case could be made that reviewers should provide testimony in litigation (presumably being compensated in doing so just as any hired experts are). I can assure the readers, from personal experience, that testifying in civil litigation sucks, at least for people with ethical standards. If this makes people reluctant to review patents, it will then reduce the number of people who can file, which -- if patents are unhelpful to the overall economy, as we previously showed -- could be a good thing.

BENEFITS AND CHALLENGES:

The great benefit of requiring a record of critical reviews is that, when litigation occurs, a possibly objective examination of the virtues of the patent or patents in use will exist -- something that doesn't happen otherwise. Incomprehensible specifications, specs that don't describe anything useful, or merely contain all the things that any skilled person would try, will be described as such by someone who (we hope) doesn't have a direct interest in the litigation. Ideas that are actually new and important will also get the benefit of such characterization. Peer review, properly conducted, will help create a background understanding of whether something new and useful was usefully disclosed, against which the arguments about what is owned and what is not can take place.

The program as proposed will create a professional obligation for people who wish to be able to file patent applications. There's nothing bad about tying privileges to obligations. If it is administered by professional societies, those societies will benefit, and thus become supporters of the program. If it administered by the USPTO, it will need to be funded, always a challenge.

Naturally, as with any system, people will try to cheat and manipulate the results. Peer review in the sciences has encountered many challenges and has experienced some spectacular failures. We can't expect this to be any easier.

While some of what is outlined above can be accomplished by the USPTO (or equivalent organizations) on their own authority, requirements limiting the ability to file will certainly require legislation, obviously a major challenge in the modern world. International filers will also need to be treated fairly, requiring revisions to existing international agreements, again time-consuming and laborious.

And that's the easy proposal. But if you don't start, you can't finish. More to come.

Recipes

From Rafael Magri

Today I was reading a book called "The Omnivore's Dilema" and came accross something that I believe could be useful in your line of research (and I don't remember reading about it anywhere else).

In the book, some executive from General Mills is quoted saying that recipes are not intellectual property. So, all you can get is a few months head start with some new product, time enough to establish a brand.

So, if the processes food industry is innovative enough, this fits nicely with the thesis that patents may be unecessary.

How many innovations are patented

Not all innovations are patented, and the question of how many is fundamental to understanding what is going on. Cecil Quillen points us to a careful new paper by R. Fontana, A. Nuvolari, H. Shimizu, A. Vezzulli attaching the issue.

The Times: You Can Get Your Invention on to the Store Shelf; Here's How

The other day, the New York Times published instructions for aspiring inventors on how to take their inventions through the patent granting process and on to the retailers' shelves link here. The examples are a couple of aspiring inventors and describes the pitfalls, the costs, and a rough estimate of the likelihood of success.

In the first example, the invention is a sun shade for a baby's stroller. The problem in this case was the number of thieves waiting to take the aspiring inventor's money without providing any service or charging an arm and a leg for minimal services. First lesson: know your help's history. Second lesson: you have to do a lot of the work yourself; it is hard to write a contract that specifies what is needed and to find a contractor who can provide it.

The second case is an inventor of a screw device to replace the broken one on the ear pieces of eyeglasses. The experience with companies who are selling consulting and other assistance is much the same as in the first case. The upfront costs of patenting and marketing are stiff and the need for added funding, often high.

The article seems to suggest that there is a growing number of successful inventor-developers and leaves the thought that with a bit of effort, you too can succeed. This does not account for the number who failed. Nor does the data cite the proportion that were brought to market by big companies who seem to dominate the marketplace when you shop and who turn out to end up with the patents that make market dominance possible.

ITC Allows Apple Imports That Violate Samsung Patents

The blog, Public Knowledge, argues that the International Trade Commission should consider the public interest in reaching regulatory decisions on patents. The Obama has so decreed when it overruled an ITC case and permitted imports of Apple phones that it had found to violate duly recognized patents of other companies, in this case foreign firms link here.

When I look at the mess in the whole patent system, I see a world of oligopolies and monopolies built on patents, supposedly designed to encourage innovation, but instead creating a self-perpetuating means to paralyze innovation.

I would do away with the whole system of patents, but that isn't going to happen. Too many huge companies have a vested interest in the existing highly profitable system. Instead, those of my persuasion must examine whether the legal change making importation illegal under a finding of public interest is a good thing, rather than allowing the competing imports and slowing Apple's ability to go on coining money. To put it differently, isn't allowing the imports in the public interest? In this case, the big American company was the winner. Who lost?

Public Knowledge announces a Patent Reform Project

I'm late with this but Public Knowledge announced two weeks ago that it was starting a Patent Reform Project link here. Given that we are surrounded with an incredibly expensive and inefficient and now corrupt (with the presence of the patent trolls' extortion) system, it is important for the informed and interested to weigh in.

One cannot be terribly optimistic about the outcome, but to leave the system to the big money and personally interested is to give up. We can do better. Given our democratic system, compromise is essential so one almost never gets all his wishes. But the critics have been making a dent in the unthinking belief that intellectual property was property like physical goods or land and that it always encouraged innovation and thus human progress. It is a right with characteristics like real property, created by law and law can be changed. Now is the time to change it.

Weigh in, please.

earlier posts


   

Most Recent Comments

Do we need a law? The issue is whether the crime is punished not who punishes it. If somebody robs our house we do

Do we need a law? 1. Plagiarism most certainly is illegal, it is called "copyright infringement". One very famous

IIPA thinks open source equals piracy Good post. Thanks for this information. By the way, if students want to get rid of their

Yet another proof of the inutility of copyright. The 9/11 Commission report cost $15,000,000 to produce, not counting the salaries of the authors.

WKRP In Cincinnati - Requiem For A Masterpiece P.S. The link to Amazon's WKRP product page:

WKRP In Cincinnati - Requiem For A Masterpiece Hopefully some very good news. Shout! Factory is releasing the entire series of WKRP in Cincinnati,

What's copywritable? Go fish in court. @ Anonymous: You misunderstood my intent. I was actually trying to point out a huge but basic

Rights Violations Aren't the Only Bads I hear that nonsense from pro-IP people all the

Intellectual Property Fosters Corporate Concentration Yeah, I see the discouragement of working on a patented device all the time. Great examples

Music without copyright Hundreds of businessmen are looking for premium quality article distribution services that can be

Les patent trolls ne sont pas toujours des officines

Les patent trolls ne sont pas toujours des officines

Patent Lawyers Who Don't Toe the Line Should Be Punished! Moreover "the single most destructive force to innovation is patents". We'd like to unite with you

Bonfire of the Missalettes!

Does the decline in total factor productivity explain the drop in innovation? So, if our patent system was "broken," TFP of durable goods should have dropped. Conversely, since

Does the decline in total factor productivity explain the drop in innovation? I wondered about TFP, because I had heard that TFP was increasing. Apparently, it depends on who

Music without copyright I do agree with all the ideas you have presented in your post. They are very convincing and will

Music without copyright It's strange, that sometimes the most simple suggestions are often the most useful! I will take the

Patents on 3D Printing Challenged by Prior Art To Loup Vaillant: "So, you think we wouldn't have had those 9 technologies without patents? I can

Patents on 3D Printing Challenged by Prior Art @anonymous: So, you think we wouldn't have had those 9 technologies without patents? I can accept